Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 343
Filter
1.
J Adv Res ; 2024 May 12.
Article in English | MEDLINE | ID: mdl-38744404

ABSTRACT

INTRODUCTION: Excess salt intake is not only an independent risk factor for heart failure, but also one of the most important dietary factors associated with cardiovascular disease worldwide. Metabolic reprogramming in cardiomyocytes is an early event provoking cardiac hypertrophy that leads to subsequent cardiovascular events upon high salt loading. Although SGLT2 inhibitors, such as canagliflozin, displayed impressive cardiovascular health benefits, whether SGLT2 inhibitors protect against cardiac hypertrophy-related metabolic reprogramming upon salt loading remain elusive OBJECTIVES: To investigate whether canagliflozin can improve salt-induced cardiac hypertrophy and the underlying mechanisms. METHODS: Dahl salt-sensitive rats developed cardiac hypertrophy by feeding them an 8% high-salt diet, and some rats were treated with canagliflozin. Cardiac function and structure as well as mitochondrial function were examined. Cardiac proteomics, targeted metabolomics and SIRT3 cardiac-specific knockout mice were used to uncover the underlying mechanisms. RESULTS: In Dahl salt-sensitive rats, canagliflozin showed a potent therapeutic effect on salt-induced cardiac hypertrophy, accompanied by lowered glucose uptake, reduced accumulation of glycolytic end-products and improved cardiac mitochondrial function, which was associated with the recovery of cardiac expression of SIRT3, a key mitochondrial metabolic regulator. Cardiac-specific knockout of SIRT3 not only exacerbated salt-induced cardiac hypertrophy but also abolished the therapeutic effect of canagliflozin. Mechanistically, high salt intake repressed cardiac SIRT3 expression through a calcium-dependent epigenetic modifications, which could be blocked by canagliflozin by inhibiting SGLT1-mediated calcium uptake. SIRT3 improved myocardial metabolic reprogramming by deacetylating MPC1 in cardiomyocytes exposed to pro-hypertrophic stimuli. Similar to canagliflozin, the SIRT3 activator honokiol also exerted therapeutic effects on cardiac hypertrophy. CONCLUSION: Cardiac mitochondrial dysfunction caused by SIRT3 repression is a critical promotional determinant of metabolic pattern switching underlying salt-induced cardiac hypertrophy. Improving SIRT3-mediated mitochondrial function by SGLT2 inhibitors-mediated calcium handling would represent a therapeutic strategy against salt-related cardiovascular events.

2.
Dent Mater ; 2024 May 07.
Article in English | MEDLINE | ID: mdl-38719710

ABSTRACT

OBJECTIVES: To investigate the effect of the stability of oxygen vacancies on the low-temperature degradation (LTD) resistance of two kinds of commercial zirconia-based materials (3Y-TZP ceramics and Ce-TZP/Al2O3 composites) via the dielectric probing methods. METHODS: The commercial 3Y-TZP ceramics and Ce-TZP/Al2O3 composites were prepared via conventional solid-state methods. Density, phase content, microstructure, strain, and biaxial flexural strength (BFS) of two materials were investigated using Archimedes method, XRD, SEM, strain-electric field (S-E) loops and ball-on-ring methods, respectively. The concentration of oxygen vacancies before and after LTD of two materials were evaluated using dielectric probing and XPS methods. RESULTS: The XRD analysis revealed that compared to the 3Y-TZP ceramics, the Ce-TZP/Al2O3 composites showed better LTD resistance, without clear LTD. The greater LTD resistance for Ce-TZP/Al2O3 composites was associated with their stability of oxygen vacancies, by higher activation energy based on the dielectric measurements and XPS results. For the 3Y-TZP ceramics that underwent the tetragonal to the monoclinic phase transition during the LTD treatment, the concentration of their oxygen vacancies decreased after LTD. In addition, the Ce-TZP/Al2O3 composites exhibited higher flexural strength and potential fracture toughness based on the BFS testing and strain vs electric field measurement results, indicating a great potential for use in fixed restorative dental applications. SIGNIFICANCE: This work suggested the stability of oxygen vacancies played a key role in the resistance to LTD. Optimizing the stability of the oxygen vacancies is key to the development of more reliable zirconia- based dental biomaterials with greater resistance to LTD.

3.
Sci Adv ; 10(19): eadi6770, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38718114

ABSTRACT

Tracking stem cell fate transition is crucial for understanding their development and optimizing biomanufacturing. Destructive single-cell methods provide a pseudotemporal landscape of stem cell differentiation but cannot monitor stem cell fate in real time. We established a metabolic optical metric using label-free fluorescence lifetime imaging microscopy (FLIM), feature extraction and machine learning-assisted analysis, for real-time cell fate tracking. From a library of 205 metabolic optical biomarker (MOB) features, we identified 56 associated with hematopoietic stem cell (HSC) differentiation. These features collectively describe HSC fate transition and detect its bifurcate lineage choice. We further derived a MOB score measuring the "metabolic stemness" of single cells and distinguishing their division patterns. This score reveals a distinct role of asymmetric division in rescuing stem cells with compromised metabolic stemness and a unique mechanism of PI3K inhibition in promoting ex vivo HSC maintenance. MOB profiling is a powerful tool for tracking stem cell fate transition and improving their biomanufacturing from a single-cell perspective.


Subject(s)
Biomarkers , Cell Differentiation , Cell Lineage , Hematopoietic Stem Cells , Biomarkers/metabolism , Animals , Hematopoietic Stem Cells/metabolism , Hematopoietic Stem Cells/cytology , Mice , Cell Tracking/methods , Single-Cell Analysis/methods , Microscopy, Fluorescence/methods , Humans
4.
Eur J Surg Oncol ; 50(6): 108340, 2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38653162

ABSTRACT

To address the limitations of conventional sentinel lymph node biopsy (SLNB), a novel hybrid tracer (indocyanine green [ICG]-99mTc-nanocolloid) has been developed. This meta-analysis aimed to compare the differences between the novel hybrid tracer and conventional methods using ICG or radioisotope (RI) for SLNB in head and neck malignancies. This study was registered in the International Prospective Register of Systematic Reviews (CRD42023409127). PubMed, Embase, Web of Science, and the Cochrane Library were systematically searched. This study included raw data on the number of sentinel lymph nodes (SLNs) identified using different modalities during surgery for head and neck malignancies. The identification rate of SLNs was the main outcome of interest. Prognostic data and complication rate cannot be deduced from this article. The heterogeneity test (I2) determined the use of a fixed- or random-effects model for the pooled risk ratio (RR). Overall, 1275 studies were screened, of which 11 met the inclusion criteria for the meta-analysis. In SLN identification of head and neck malignancies, ICG-99mTc-nanocolloid was superior to ICG or RI. In the subgroup analyses, the detection rates of ICG and RI tracers in SLNB were comparable, regardless of the device, tumor type, or tumor stage. In conclusion, in SLN identification of head and neck malignancies, the use of ICG-99mTc-nanocolloid is superior to the single technique of ICG or RI. This study suggests that Hospitals using ICG or RI may find it beneficial to change their practice to ICG-99mTc-nanocolloid, especially in the head and neck area, owing to its superior effectiveness.

5.
Foods ; 13(8)2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38672955

ABSTRACT

The structure and function of phenoyl oligosaccharides in baijiu distillers' grains (BDGs) have not been identified and investigated yet. This study aimed to elucidate the major phenolic oligosaccharides present in BDGs, optimize their extraction process via a central composite design, and assess their anti-inflammatory properties utilizing the LPS-induced RAW264.7 inflammation model. The main results are as follows: feruloylated oligosaccharides (FOs) were identified as the main phenoyl oligosaccharides in BDGs with a structure of ferulic acid esterified on arabinooligosaccharide xylose. Then, the preparation process of FOs was optimized using the following conditions: pH 5, temperature 55 °C, time 12 h, xylanase addition amount 7 g/L, BDG concentration 120 g/L. Furthermore, the acquired FOs demonstrated notable scavenging activity against DPPH and ABTS free radicals, with Trolox equivalent values of 366.8 ± 10.38 and 0.35 ± 0.01 mM Trolox/mg sample, respectively. However, their efficacy was comparatively lower than that of ferulic acid. Finally, the obtained FOs could effectively inhibit the LPS-induced secretion of TNF-α, IL-6, and IL-1ß and promote the secretion of IL-10 in RAW264.7 cells. Based on the above results, FOs from BDGs were determined to have certain antioxidant and anti-inflammatory activities.

7.
Int J Food Microbiol ; 417: 110685, 2024 Jun 02.
Article in English | MEDLINE | ID: mdl-38579546

ABSTRACT

Cinnamaldehyde displays strong antifungal activity against fungi such as Aspergillus niger, but its precise molecular mechanisms of antifungal action remain inadequately understood. In this investigation, we applied chemoproteomics and bioinformatic analysis to unveil the target proteins of cinnamaldehyde in Aspergillus niger cells. Additionally, our study encompassed the examination of cinnamaldehyde's effects on cell membranes, mitochondrial malate dehydrogenase activity, and intracellular ATP levels in Aspergillus niger cells. Our findings suggest that malate dehydrogenase could potentially serve as an inhibitory target of cinnamaldehyde in Aspergillus niger cells. By disrupting the activity of malate dehydrogenase, cinnamaldehyde interferes with the mitochondrial tricarboxylic acid (TCA) cycle, leading to a significant decrease in intracellular ATP levels. Following treatment with cinnamaldehyde at a concentration of 1 MIC, the inhibition rate of MDH activity was 74.90 %, accompanied by an 84.5 % decrease in intracellular ATP content. Furthermore, cinnamaldehyde disrupts cell membrane integrity, resulting in the release of cellular contents and subsequent cell demise. This study endeavors to unveil the molecular-level antifungal mechanism of cinnamaldehyde via a chemoproteomics approach, thereby offering valuable insights for further development and utilization of cinnamaldehyde in preventing and mitigating food spoilage.


Subject(s)
Acrolein , Acrolein/analogs & derivatives , Antifungal Agents , Aspergillus niger , Fungal Proteins , Malate Dehydrogenase , Acrolein/pharmacology , Aspergillus niger/drug effects , Malate Dehydrogenase/metabolism , Fungal Proteins/metabolism , Antifungal Agents/pharmacology , Adenosine Triphosphate/metabolism , Proteomics , Microbial Sensitivity Tests , Citric Acid Cycle/drug effects
8.
Plant Physiol ; 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38478589

ABSTRACT

Manipulation of gene expression is central to understanding gene function, engineering cell behavior, and altering biological traits according to production demands. Nuclease-dead Cas9 (dCas9), a variant of active Cas9, offers a versatile platform for the precise control of genome function without DNA cleavage. Notably, however, an effective and universal dCas9-based transcriptional repression system remains unavailable in plants. The non-canonical histone acetyltransferase TENDRIL-LESS (CsTEN) is responsible for chromatin loosening and histone modification in cucumber (Cucumis sativus). In this study, we engineered a gene regulation tool by fusing TEN and its truncated proteins with dCas9. The full-length dCas9-TEN protein substantially repressed gene expression, with the N-terminal domain identified as the core repression domain. We subsequently validated the specificity and efficacy of this system through both transient infection and genetic transformation in cucumber and Arabidopsis (Arabidopsis thaliana). Electrophoretic mobility shift assay (EMSA) revealed the ability of the N-terminal domain of TEN to bind to chromatin, which may promote target binding of the dCas9 complex and enhance the transcriptional repression effect. Our tool enriches the arsenal of genetic regulation tools available for precision breeding in crops.

9.
Front Immunol ; 15: 1324113, 2024.
Article in English | MEDLINE | ID: mdl-38318173

ABSTRACT

Objective: The development of diffuse large B-cell lymphoma (DLBCL) is closely related to the host infection status. China is a highly endemic area for hepatitis B virus (HBV) infection. It is not clear whether HBV infection has a consistent effect on the prognostic implications of patients with DLBCL in different treatment settings. Materials and methods: We conducted a cohort study of 692 patients with DLBCL receiving three or more cycles of treatment with a CHOP or R-CHOP regimen from the First Hospital of Jilin University between July 2011 and July 2022. The patients were divided into two groups based on their hepatitis B surface antigen (HBsAg) status: HBsAg-positive (n = 84, 12.1%) and HBsAg-negative (n = 608, 87.9%) groups. Tumor specimens from 180 patients with primary DLBCL were collected for next-generation sequencing (NGS). Results: The HBsAg-positive group had more frequent abnormal liver function (P = 0.003), hypoalbuminemia (P < 0.001), incidence of > 2 extranodal organs (P = 0.011), and spleen involvement (P < 0.001) than the HBsAg-negative group. HBsAg-positive patients had lower complete response (CR) and overall response rates (ORR) rates (all the p values < 0.05), in either the CHOP group or R-CHOP group. Among patients receiving R-CHOP, the rates of disease progression within 12 and 24 months were higher in the HBsAg-positive group than in the HBsAg-negative group (P=0.018, P=0.029). However, no significant difference in disease progression was observed between HBsAg-positive and HBsAg-negative patients in the CHOP group(P > 0.05). HBsAg positivity (OS: HR [95% CI] = 2.511 [1.214-5.192], P = 0.013) was only associated with poorer OS in the CHOP group. Whereas in the R-CHOP group, HBsAg positivity was associated with both poorer OS and PFS (OS: HR [95% CI] = 1.672 [1.050-2.665], P = 0.030; PFS: HR [95% CI] = 1.536 [1.013-2.331], P = 0.043). Additionally, HBsAg-positive patients with DLBCL also had a higher prevalence of mutations in MYC, ATM, PTPN6, and epigenetically regulated genes. Conclusion: These findings suggest that HBsAg-positive DLBCL patients may represent a distinct subgroup with a poorer prognosis. The standard therapies may be insufficient and new therapeutic strategies should be developed based on a better understanding of the underlying mechanisms of chemoresistance.


Subject(s)
Hepatitis B Surface Antigens , Lymphoma, Large B-Cell, Diffuse , Humans , Cohort Studies , Cyclophosphamide/therapeutic use , Disease Progression , Doxorubicin/therapeutic use , Lymphoma, Large B-Cell, Diffuse/drug therapy , Prednisone/therapeutic use , Rituximab/therapeutic use , Vincristine/therapeutic use
10.
Plant Cell ; 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38421027

ABSTRACT

A number of cis-regulatory elements (CREs) conserved during evolution have been found to be responsible for phenotypic novelty and variation. Cucurbit crops such as cucumber (Cucumis sativus), watermelon (Citrullus lanatus), melon (Cucumis melo) and squash (Cucurbita maxima) develop fruits from an inferior ovary and share some similar biological processes during fruit development. Whether conserved regulatory sequences play critical roles in fruit development of cucurbit crops remains to be explored. In six well-studied cucurbit species, we identified 392,438 conserved non-coding sequences (CNSs), including 82,756 that are specific to cucurbits, by comparative genomics. Genome-wide profiling of accessible chromatin regions (ACRs) and gene expression patterns mapped 20,865-43,204 ACRs and their potential target genes for two fruit tissues at two key developmental stages in six cucurbits. Integrated analysis of CNSs and ACRs revealed 4,431 syntenic orthologous CNSs, including 1,687 cucurbit-specific CNSs that overlap with ACRs that are present in all six cucurbit crops and that may regulate the expression of 757 adjacent orthologous genes. CRISPR mutations targeting two CNSs present in the 1,687 cucurbit-specific sequences resulted in substantially altered fruit shape and gene expression patterns of adjacent NAC1 (NAM, ATAF1/2 and CUC2) and EXT-like (EXTENSIN-like) genes, validating the regulatory roles of these CNSs in fruit development. These results not only provide a number of target CREs for cucurbit crop improvement, but also provide insight into the roles of CREs in plant biology and during evolution.

11.
Sci Rep ; 14(1): 3235, 2024 02 08.
Article in English | MEDLINE | ID: mdl-38331978

ABSTRACT

The purpose of this study is to compare the accuracy and effectiveness of ultrasound-guided and fluoroscopy-guided lumbar selective nerve root block (SNRB), and to explore the feasibility of ultrasound-guided methods. This retrospective study included patients with lumbar radicular pain who underwent ultrasound-guided and fluoroscopy-guided selective nerve root block at Honghui Hospital Affiliated to Xi'an Jiaotong University from August 2020 to August 2022. Patients were divided into U-SNRB group and F-SNRB group according to ultrasound-guided or fluoroscopy-guided selective nerve root block. There were 43 patients in U-SNRB group and 20 patients in F-SNRB group. The pain visual analogue scale (VAS) scores, Japanese Orthopaedic Association (JOA) scores, related indexes and complications were recorded and compared between the two groups before, 30 min, 1 month and 6 months after block. To evaluate the feasibility, accuracy and effectiveness of ultrasound-guided selective nerve root block. There were no complications in the process of selective nerve root block in both groups. The operating time and the times of closing needle angle adjustment in U-SNRB group were better than those in F-SNRB group, and the difference was statistically significant (P < 0.05). The VAS score and JOA score of patients in the two groups were significantly improved 30 min after block, 1 month and 6 months after block, and the difference was statistically significant (P < 0.05). There was no significant difference between the two groups (P > 0.05). The accuracy of ultrasound-guided selective nerve root block and the degree of pain relief of patients were similar to those of fluoroscopy guidance, but the operation time and needle angle adjustment times were significantly less than that of fluoroscopy, and could effectively reduce radiation exposure. Therefore, it can be used as a better way to guide for choice.


Subject(s)
Radiculopathy , Sciatica , Humans , Retrospective Studies , Radiculopathy/surgery , Sciatica/complications , Fluoroscopy , Ultrasonography, Interventional/methods
12.
J Cell Biochem ; 125(4): e30539, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38372014

ABSTRACT

The circadian clock controls the expression of a large proportion of protein-coding genes in mammals and can modulate a wide range of physiological processes. Recent studies have demonstrated that disruption or dysregulation of the circadian clock is involved in the development and progression of several diseases, including cancer. The cell cycle is considered to be the fundamental process related to cancer. Accumulating evidence suggests that the circadian clock can control the expression of a large number of genes related to the cell cycle. This article reviews the mechanism of cell cycle-related genes whose chromatin regulatory elements are rhythmically occupied by core circadian clock transcription factors, while their RNAs are rhythmically expressed. This article further reviews the identified oscillatory cell cycle-related genes in higher organisms such as baboons and humans. The potential functions of these identified genes in regulating cell cycle progression are also discussed. Understanding how the molecular clock controls the expression of cell cycle genes will be beneficial for combating and treating cancer.


Subject(s)
Circadian Clocks , Neoplasms , Animals , Humans , Circadian Rhythm/genetics , Cell Cycle/genetics , Circadian Clocks/genetics , Cell Division , Neoplasms/genetics , Mammals
13.
Org Lett ; 26(6): 1201-1206, 2024 Feb 16.
Article in English | MEDLINE | ID: mdl-38308848

ABSTRACT

We developed an asymmetric decarboxylative allylic alkylation of vinylethylene carbonates with α-fluoro pyridinyl acetates through a synergistic palladium/copper catalysis. This protocol provides chiral allylic alcohol with carbon-fluorine quaternary stereogenic centers in good yield with good enantioselectivities and excellent regioselectivities. The utility of this approach was further demonstrated via a gram-scale experiment and derivatizations of the product.

14.
Chem Asian J ; 19(6): e202301122, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38224122

ABSTRACT

A palladium-catalyzed cascade cyclization/alkenylation for the assembly of synthetically valuable isoxazolyl vinylsilane derivative has been accomplished. Easily accessible ynone oximes, and available vinylsilane agents were used as the reaction starting materials This protocol features broad substrate scope, good functional group tolerance, and good step- and atom-economy. Remarkably, this approach provides a new approach for the construction of structurally diverse isoxazolyl-containing vinylsilanes with high molecular complexity, showing a promising application in synthetic and pharmaceutical chemistry.

15.
Cell Commun Signal ; 22(1): 73, 2024 01 26.
Article in English | MEDLINE | ID: mdl-38279161

ABSTRACT

The functions of macrophages are governed by distinct polarization phenotypes, which can be categorized as either anti-tumor/M1 type or pro-tumor/M2 type. Glycosylation is known to play a crucial role in various cellular processes, but its influence on macrophage polarization is not well-studied. In this study, we observed a significant decrease in bisecting GlcNAc during M0-M1 polarization, and impaired bisecting GlcNAc was found to drive M0-M1 polarization. Using a glycoproteomics strategy, we identified Lgals3bp as a specific glycoprotein carrying bisecting GlcNAc. A high level of bisecting GlcNAc modification facilitated the degradation of Lgals3bp, while a low level of bisecting GlcNAc stabilized Lgals3bp. Elevated levels of Lgals3bp promoted M1 polarization through the activation of the NF-кB pathway. Conversely, the activated NF-кB pathway significantly repressed the transcription of MGAT3, leading to reduced levels of bisecting GlcNAc modification on Lgals3bp. Overall, our study highlights the impact of glycosylation on macrophage polarization and suggests the potential of engineered macrophages via glycosylated modification. Video Abstract.


Subject(s)
Macrophages , NF-kappa B , Glycosylation
16.
Bioeng Transl Med ; 9(1): e10615, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38193111

ABSTRACT

Long-term patient and graft survival has been achieved in organ transplantation but at the expense of toxic side effects that are associated with long-term use of nonspecific immunosuppressive drugs. Discovering new regulators of dendritic cells is the key for development of an ideal treatment to prevent immune rejection. We hypothesized that knockdown of circMAP2K2 induces immunosuppressive DCs and that treatment with circMAP2K2 silenced-DCs can prevent alloimmune rejection. DCs were cultured and transfected with siRNA for circMAP2K2. circMAP2K2 levels were measured by qRT-PCR. DC's maturation and immune function were assessed by flow cytometry and mixed lymphocyte reactions. The function of circMAP2K2 was illustrated by a series of RIP and IP. The therapeutics of engineered DCs was tested in a mouse heart transplantation model. We found that circMAP2K2 was highly expressed in mature DCs. Knockdown of circMAP2K2 reduced expression of MHCII, CD40 and CD80, attenuated the ability of DCs to activate allogeneic naïve T cells, and enhanced CD4+CD25+FOXP3+ regulatory T cells (Treg). circMAP2K2-induced immunosuppressive DCs by interacting with SENP3. Treatment with circMAP2K2-knockdown DCs attenuated alloimmune rejection and prolonged allograft survival in a murine heart transplantation model. The immune suppression induced in vivo was donor-antigen specific. In conclusion, knockdown of circMAP2K2 can induce immunosuppressive DCs which are able to inhibit overactive immune response, highlighting a new promising therapeutic approach for immune disorder diseases.

17.
Diabetol Metab Syndr ; 16(1): 9, 2024 Jan 09.
Article in English | MEDLINE | ID: mdl-38191455

ABSTRACT

BACKGROUND: Type 2 diabetes mellitus (T2DM), one of the most common public diseases threatening human health, is always accompanied by infection. Though there are still a variety of flaws in the treatment of some infectious diseases, metabolomics provides a fresh perspective to explore the relationship between T2DM and infection. Our research aimed to investigate the association between plasma free amino acids (PFAAs) and T2DM complicated with infection in Chinese patients. METHODS: A cross-sectional study was conducted from May 2015 to August 2016. We retrieved the medical records of 1032 inpatients with T2DM from Liaoning Medical University First Affiliated Hospital and we used mass spectrometry to quantify 23 PFAAs. Infections contained 15 individual categories that could be retrieved from the database. Principal component analysis was used to extract factors of PFAAs. Multi-variable binary logistic regression was used to obtain odds ratios (OR) and their 95% confidence intervals (CI). RESULTS: Among 1032 inpatients,109 (10.6%) had infectious diseases. Six factors, accounting for 68.6% of the total variance, were extracted. Factor 4 consisted of Glu, Asp and Orn. Factor 5 consisted of Hcy and Pip. After adjusting for potential confounders, factor 4 was positively correlated with T2DM complicated with infection in Chinese T2DM patients (OR: 1.27, 95%CI: 1.06-1.52). Individual Hcy in factor 5 was positively associated with T2DM complicated with infection (OR: 1.33, 95%CI: 1.08-1.64). Furthermore, factor 4 (OR: 1.44, 95%CI: 1.11-1.87), Orn (OR: 1.01, 95%CI: 1.00-1.02) and Hcy (OR: 1.56, 95%CI: 1.14-3.14) were positively associated with bacterial infection in Chinese T2DM patients, while factor 5 (OR: 0.71, 95%CI: 0.50-1.00) was negatively associated with bacterial infection. CONCLUSIONS: Urea cycle-related metabolites (Orn, Asp, Glu) and Hcy were positively associated with T2DM complicated with infection in China. Orn and Hcy were positively associated with bacterial infection in T2DM patients in China.

18.
J Phys Chem Lett ; 15(2): 575-582, 2024 Jan 18.
Article in English | MEDLINE | ID: mdl-38198562

ABSTRACT

Water is often viewed as detrimental to organic halide perovskite stability. However, evidence highlights its efficacy as a solvent during organic perovskite liquid synthesis. This paradox prompts an investigation into water's influence on perovskite nanoclusters. Employing first principle calculations and ab initio molecular dynamics simulations, surprisingly, we discover some subsurface layers of methylammonium lead iodide (MAPbI3) nanoclusters exhibit stronger relaxation than surface layers. Moreover, a strong quantum confinement effect enhances the band gap of MAPbI3 as the nanocluster size decreases. Notably, the water molecules above MAPbI3 nanoclusters induce rich localized defect states, generating low-lying shallow states above the valence band for the small amounts of surface water molecules and band-like deep states across the whole gap for large nanoclusters. This work provides insights into water's role in the electronic structure and structural evolution of perovskite nanoclusters, aiding the design of water-resistant layers to protect perovskite quantum dots from ambient humidity.

19.
Biomedicines ; 12(1)2024 Jan 16.
Article in English | MEDLINE | ID: mdl-38255304

ABSTRACT

Deep vein thrombosis (DVT) is a life-threatening condition that can lead to its sequelae pulmonary embolism (PE) or post-thrombotic syndrome (PTS). Murine models of DVT are frequently used in early-stage disease research and to assess potential therapies. This creates the need for the reliable and easy quantification of blood clots. In this paper, we present a novel high-frequency 3D ultrasound approach for the quantitative evaluation of the volume of DVT in an in vitro model and an in vivo murine model. The proposed method involves the use of a high-resolution ultrasound acquisition system and semiautomatic segmentation of the clot. The measured 3D volume of blood clots was validated to be correlated with in vitro blood clot weights with an R2 of 0.89. Additionally, the method was confirmed with an R2 of 0.91 in the in vivo mouse model with a cylindrical volume from macroscopic measurement. We anticipate that the proposed method will be useful in pharmacological or therapeutic studies in murine models of DVT.

20.
Invest Ophthalmol Vis Sci ; 65(1): 34, 2024 Jan 02.
Article in English | MEDLINE | ID: mdl-38236186

ABSTRACT

Purpose: The purpose of this study was to elucidate the involvement of potassium two pore domain channel subfamily K member 5 (KCNK5)-mediated potassium efflux in the pathogenesis of dry eye and to unravel the underlying molecular mechanisms. Methods: To induce experimental dry eye in adult wild-type C57BL/6 mice, scopolamine was administered via subcutaneous injection, and the mice were subjected to desiccating stress. To create an in vitro model of dry eye, desiccation stress was applied to the human corneal epithelial cell line (HCE-T). Intracellular potassium concentration was quantified using inductively coupled plasma mass spectrometry. Cellular death was assessed through lactate dehydrogenase assays. Gene expression profiling was conducted through both RNA sequencing and quantitative real-time PCR. Protein analysis was carried out through Western blotting and immunofluorescence staining. Assessment of the corneal epithelial defect area was conducted through fluorescein sodium staining. Tear secretion was quantified using the phenol red cotton thread method. Results: Potassium efflux was observed to further facilitate corneal epithelial pyroptosis. KCNK5 exhibited upregulation in both in vivo and in vitro models of dry eye. The overexpression of KCNK5 was observed to induce potassium efflux and activate the NLR family pyrin domain containing 3 (NLRP3) inflammasome-mediated pyroptosis in vitro. Silencing KCNK5 effectively mitigated pyroptosis in dry eye. Additionally, the overexpression of KCNK5 results in the downregulation of TNF superfamily member 10 (TNFSF10) and subsequent impairment of autophagy. TNFSF10 supplementation could promote autophagy and mitigate pyroptosis in dry eye. Conclusions: The upregulation of KCNK5 mediates TNFSF10 to impair autophagy and induce pyroptosis in dry eye. Consequently, targeting KCNK5 may represent a novel and promising approach to therapeutic intervention in the management of dry eye.


Subject(s)
Dry Eye Syndromes , Potassium Channels, Tandem Pore Domain , TNF-Related Apoptosis-Inducing Ligand , Animals , Humans , Mice , Autophagy , Dry Eye Syndromes/metabolism , Epithelial Cells , Mice, Inbred C57BL , Potassium Channels, Tandem Pore Domain/metabolism , Pyroptosis , TNF-Related Apoptosis-Inducing Ligand/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...